

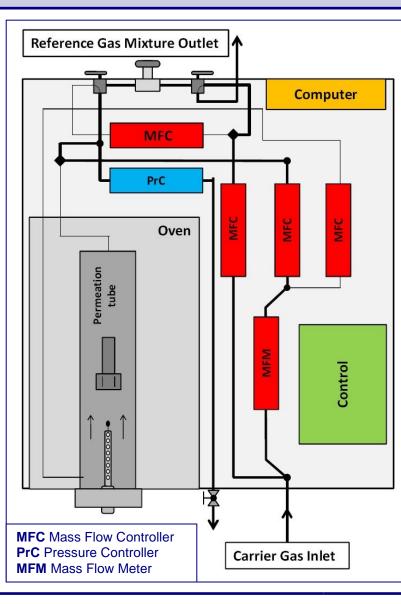
GAS2015

On Development and Characterisation of a Portable Standard Gas Generator

Daiana Leuenberger, Céline Pascale, Andreas Ackermann, Myriam Guillevic, Bernhard Niederhauser

Federal Institute for Metrology METAS

The EMRP JRP ENV55 MetNH3 (Metrology for Ammonia in Ambient Air) aims at providing certified reference material (CRM) in relevant Ammonia (NH₃) amount fractions (0.5-500 nmol/mol) for air quality monitoring.


For this purpose and as alternative to CRM in gas cylinders, the Federal Institute of Metrology **METAS is developing a traceable portable gas standard generator**. This device is based on the specific **temperature dependent permeation** of the reference substance (NH₃) through a membrane into a flow of carrier gas (N₂ or air). This mixture is then diluted to desired amount fractions in 1 to 2 steps according to $x_p = x_B \frac{V_1}{V_1 + V_2} + x_{DG}$ (where x_P (nmol/mol) is the resulting NH₃ concentration, x_B the primary NH₃ concentration, \dot{V}_1 the base gas flow, \dot{V}_2 the dilution gas flow, x_{DG} the background concentration of ammonia in the dilution gas).

Second dilution step and traceability of all components are novelties compared to commercially available gas generators. Here we present first insights into the development of said instrument, the characterisation of individual components leading to the uncertainty estimation for the generated NH₃ gas mixture according to GUM, which is aimed to be <3 %.

Moreover, we present first results of the study on adsorption/desorption effects of NH₃ on different tubing materials.

Permeation

The controlled permeation of a substance through a polymer primarily membrane is temperature dependent and results in a measureable mass loss over time. A **permeation tube** with a traceable permeation rate $Pr = \frac{\Delta m}{\Delta t}$ (SItraceably determined by a Magnetic Suspension Balance (MSB). resolution= 10^{-6} g) is placed in the permeation oven. Long-term expanded measurement uncertainty: Pr = < 1.7 %Contribution to total uncertainty: measurement Pr = 20% - 80%Surface Coating Surfaces in contact with NH₃ have been coated with commercially available SilcoNert 2000 (SilcoTek). significantly reduces This

Reduction of adsorption losses and stabilisation time by surface coating

Dilution

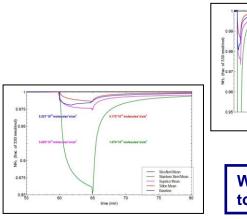
First dilution step qv₁: Reduces NH₃ amount fractions generated in permeation oven to (> 100 nmol/mol), expanded measurement uncertainty (k=2) $qv_1 = 0.2$ %

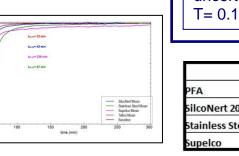
Split flow qv_3: Subdivision, expanded measurement uncertainty (k=2) $qv_3 = 0.3$ %

Second dilution step qv₄: Reduces NH₃ amount fractions generated in permeation oven to (> 0.5 nmol/mol) expanded measurement uncertainty (k=2) $qv_3 = 0.2$ %

Contribution of dilution steps to total measurement uncertainty: $qv_{tot} = < 30 \%$

Additional Contributions


Purity of the matrix gas: Increasing with decreasing NH_3 amount fractions (0.05 ± 0.05 nmol/mol), significantly increases total measurement uncertainty by up to 100%.


Temperature regulation in the oven: Instability increasing with increasing temperatures, corresponding to an increase in the uncertainty of 2% for a difference in

Following the approach of *Vaittinen* (2013), 4 different types of tubing (Stainless Steel 316, Polymer (PFA), 2 fused silica coatings applied to Stainless Steel 316 (Supelco, SilcoNert 2000)) have been exposed to a gas mixture of 330 ppb NH₃ in N₂ (Alphagaz II). Adsorption loss (molecules*s/cm²) and stabilisation time ($t_{99.9\%}$) have been evaluated.

losses

stabilisation time (see below).

T = 0.1 K.	OI	2%	IO	а	difference in	

-	t (99.9%)	adsorbed mol*s/cm ² (t _{99.9%})
PFA	22 min	3.172 *10 ¹⁶
SilcoNert 2000	42 min	3.321 *10 ¹⁶
Stainless Steel 316	87 min	1.074 *10 ¹⁷
Supelco	236 min	3.629*10 ¹⁶

We recommend to have SilcoNert 2000 (SilcoTek) applied to Stainless Steel surfaces in contact with NH₃.

adsorption

and

The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union Reference:

Vaittinen et al.: Adsorption of Ammonia on stainless steel and treated polymer surfaces. Applied Physics B, 2013. Contact details: Daiana Leuenberger daiana.leuenberger@metas.ch www.metas.ch http://metnh3.eu